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Introduction

This report describes a feasibility study conducted to investigate the

possibility of using optimal sensitivity design techniques to design a feed-

back control system for & large, flexible booster. The vehicle to be controlled

is described in NASA MSFC "Model Vehicle No. 2". The design objective is to
maintain the vehicle in the immediete neighborhood of & predefined nominal
trajectory in spite of disturbances acting on the vehicle. These disturbances
are both external, such as random wind gusts, and internal such as changes in
vehicle parameters. An additional design objective is to keep the bending

of the vehicle within design limits, preferably as small as possible.

The nominal trajectory of the vehicle is described by a set of nonlinear
differential equations. However, small perturbations of the vehicle's motion
about the nominal can be adequately characterized by & set of linear incre-
mental differential equations with time varying coefficients. The data needed
to calculate these coefficients were obtained from the "Model Vehicle No. 2"

data package.l

The Problem

The vehicle to be controlled is a large flexible booster of the Saturn .
type. Control is exerted by gimballing four of the eight propulsion engines.
The control objectives can be divided into categories -- rigid body objectives
and bending body obJjectives.

The object of the rigid body control is to maintain the vehicle as close
as possible to its nominal trajectory in spite of random wind gusts. As a
first approximation it is assumed that the necessary parameters of the fic-
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ticious rigid body can be measured exactly (cf. Fisher).
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trollsble) torque applied to one end.

control torque for the rigid body excites bending modes in the vehicle.
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Unfortunately, because the vehicle is flexible, this rigid body is non-

Rather the vehicle behaves like an unsupported beam with a (con-

Gimballing the éngines to provide a

If

ignored, these oscillations could reach a point where the vehicle exceeds

its elastic limits and is destroyed.

vent this.

A successful control strategy must pre-

Because of the large size of the vehicle, however, full scale

experimental determinations of the values of the parameters involved in the

bending is difficult.

Thus, the successful control strategy must limit the

bending when the parameters are known only approximetely and change with time.

For simplicity only the first bending mode is considered and its equation

is assumed to be that of a linear oscillator.

mode .
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The right hand side of the equation is the engine excitation of the

Combining this first bending mode with the rigid body description

gives the vehicle description in terms of five state variables.
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The numerical values of these time varying coefficients are obtained in tabu-

lar form from Ref. 1.

Sensitivity Design Method3’ *’>

The trajectory of an optimal control system is sensitive to changes
in the vehicle parameters. Thus, it is important to develop & control strat-
egy which compensates for the effect of these changing paremeters, preferably
without having to track them. The control system should be designed so that
the vehicle trajectory approximates the nominal trajectory corresponding to
the nominal perameter values, in spite of variations of these parameters from
their nominal values. Adjoining a sensitivity index and sensitivity equa-
tions to the standard optimal control problem mekes this possible.

To consider the problem in more concrete terms, it is necessary to make
the following assumptions, all of which are met by the flexible booster pro-
blems:

1. The process has a finite number of state equations of the form:

X = f(x; B, 4, t) X(to) = C
where

x: n-dimensional state vector
B: r-dimensional control vector
q: m-dimensional parameter vector with nominal value 9,
2. The parameters appear as coefficients in the differential equation.
3. Any parameter variation does not change the number of state variables.
It is also assumed that f satisfies the continuity conditions which
guarantee a unigue solution x(t) with x(to) = ¢ once the control B and the

parameter q are specified.
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Since closed loop control is desired, B can be written as

B = p(x,t)

For a given control strategy let the nominal trajectory corresponding

to go be
X = xo(t: ﬁo:qo)
Then the trajectory deviation due to the parameter variation

Q =4, +8 g is given by
ax =x (t:5:f1) - X (t’Bo’qo)

The magnitude of the deviation can be defined in terms of "x“ , the Euclidean

norm of Xx. Expanding this deviation in a Taylor Series gives -

AX = J (%\ <q_-q_°) + higher order

tecms
o %
where e |
%, s
I(%) = C
M - - - Kn

29, X m ‘
To simplify the mathematics at this point, g is assumed to be a scalar,

that is a single parameter. For small perturbations, the higher order terms

in the Taylor Series can be neglected, giving -
X

% )81

If an upper bound on the parameter variation S a(t) is known or assumed,

AX = 8x

then a bound can be found for 8x, the first order trajectory dispersion.
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For suitably small SQ; then, “&“ can be limited by limiting

24 || %&51“ .

At a point on the perturbed trajectory 0(,13 = (xo"Axsq_o*' A&) the

state equations become

X, +AX = 'r{xc"‘Ax, P(Xoi-bx,t\’ 3°+Aq_st}

Expanding this in a taylor Series about (x > a4, ) -

xo'\' bx = (ac ?@ ab)()bx +( Q)Aq.

< higher order terms

where f an its derivatives are evaluated at (xo,qo). Again, for small

Sq = (q - qo) the higher order terms are negligible, leaving -

I
si- (4% 8+ (%)8q

where Sx is the first order approximation to A x.
If Sq is a (known) bound on the parameter variation which yields the
meximum trajectory dispersion A x, then, letting z(t) 48 x{as above, the

sensitivity equation can be written as
- [, ef 28
i=(%, > o)z (& 7)%¢

This is a linear differentisl equation defined on the nominal trajec-
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tory. If the trajectory dispersion due to parameter variation is to be
limited, the nominal trajectory and nominal control must be chosen to limit
z(t). This is done by incorporating the sensitivity measure into the optimal
control problem. To do this the optimal control problem is reformulated to
minimize the sum of the original index of performance J and an index of sen-
sitivity J subject to the constraints of the vehicle and the sensitivity
equation.

The augmented optimal control problem thus becomes

determine pit‘x t) = {P‘ M (I-"%)‘

3= S 4-’ 0, 8,1 dt

where

3’ S %0(2 ) dt

subject to . ‘C( quo)ﬂ't) k(io)=c
2 = (aai+b_fé@32+ &1 2(,)=0

where fo and g, are positive definite functions of x,v,B, and z.

Upon inspection it is found that this problem does not admit to a solu-
tion as there is no relation which yields the structural information necessary
to construct p¥(t). Specifically -%{% is unknown. The problem is under-
specified. Therefore, the designer imposes this structural information in
the form of a feedback control law. This completes the specification of the
problem and allows it to be solved. The designer, however, must be judicious
in his choice of feedback structure, since the resulting "optimal" closed
loop system is then optimal only with respect to the specific type of feed-

back structure specified. Two rather general structures are considered below.
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Cascade Gains

Consider the control system shown in Fig. 1. This consists of a set
of cascade gains with unit feedback around the plant. The control law for
this case is

B(x,t) = K(v - x)

where K is the vector of feedback gains and v is the desired state response.
The gains are to be chosen to reduce the sensitivity of the nominal trajec-

tory to parameter variations and to keep the vehicle a&s close to the nominal
trajectory as possible.

Using this control, the plant equation becomes -

¥ = -c(x, K(o-1) g,,,‘l:)

and the sensitivity equation is
> (&- b_f )2* a'cs&
2=\~ 2pK oq
Thus, the optimal control problem becomes

I-= ft £, (¢ ktr-ny Y dt
min (J + J) where _E(

K A

K = g %D (%gt) dt
t.

subject to the state and sensitivity equations.

The solution of this problem by standard parameter optimization methods
gives a set of feedback gains K which is really a trade off between the two

objectives of the problem. Two targets are being aimed at with only one arrow.

The next section improves on this situation.

Feedback Gains with Autonomous Input

Consider the system of Fig. 2. This time control is exerted by a set
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of feedback gains and a pre-computed autonomous input (or prefilter).

To solve this problem it is necessary to combine control signal and
parameter optimization.

First, parameter optimization is used to determine the feedback gains
that offer the greatest protection against trajectory perturbations due to
parameter changes. Then, constraining the feedback gains to be constant,
the autonomous input is selected to keep the vehicle as near the desired
trajectory as possible while further minimizing parameter sensitivity if

possible. Thus, the control law is of the form:
B(x,t) = u(t) - Kx(t)

where K is the constant feedback matrix and u(t) the autonomous input -

The nominal process equation is now
x = £(x, u - Kx, qo;t) x(to) =

The sensitivity equation is
i—(bc ch)i —383 2(t,)=0

Assuming that the index of performance integrand can be written as
fO (x, v, B, t) = fl(x:vyt) + fg(B;t)
ie. that no cross-product terms appear, the problem can be stated in the

following form:

m\n. j -Cd'L + mwu § ('P 2+ Qo) dt]‘

subject to the state and sensitivity equations.

In order to adapt this problem to standard optimization technigues it

can be restated as two related problems.



1. TIeedback Gain Selection.

¢
wi {7 (6,490 dt
K t,

subject to the state and sensitivity
equations.

2. Autonomous Input Selection:

t¢
Ild& g (42;+€y;)<i1:
t,

U

subject to the state and sensitivity

equations and K = O.

Results

The cascade gain configuration was solved on a digital computer. Since

this was a feasibility study, weighting matrices were not selected to give
the best possible results, rather the first weights tried that gave reason-
able results were used. With more time invested in this selection results
should be better.

Figure 3 shows pitch error and normalized bending for sensitivity
weilghting equal to zero. This corresponds to the usual parameter optimiza-
tion solution. In both graphs the solid line indicates the response of the
vehicle for nominal bending frequency, wb. The dotted line indicates the
response for a —20% perturbation in bending frequency. The errors in this
case are not only much greater, but they exhibit diverging oscillations.

Figure 4 shows the same quantities with the sensitivity weighting in-

creased to 10,000. Since the state and control weighting was not changed,

the results for nominal bending frequency are slightly worse than those above.

However for the —20% perturbation in « the results are clearly greatly improved

and in fact, quite acceptable.
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This study has proven the feasibility of using optimal sensitivity
design techniques to design & control system for a large, flexible booster.
Work is currently underway to use the techniques on a more sophisticated
vehicle model where, for instance, state information is not directly avail-
able. Further development of the Feedback Gain Autonomous Input Technique
is also underway and this is expected to give even better results than the

Cascade Gain Configuration.
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DEFINITION OF SYMBOLS

F
K
lcg

lep

Total thrust of Booster

Amplifier gain

Distance from engine gimbal to vehicle center of gravity
Distance from vehicle center of gravity to center of pressure
Total vehicle mass

Generalized mass of first bending mode

Aerodynamic force

(unknown) parameter

Control thrust

Autonomous input (output of prefilter)

Reference input

Vehicle velocity

State vector

Drag Force

Normalized displacement at engine gimbal

Sensitivity vector

Attack angle

Wind induced attack angle
Engine gimbal angle
Attitude angle

First bending mode damping
First bending mode amplitude

First bending mode frequency.
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